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ABSTRACT
The most highly conserved regions of proteins can be represented as "blocks" of locally
aligned sequence segments. Previously, an automated system was introduced to
generate a database of blocks that is searched for local similarities using a sequence
guery. Here we describe a method for searching this database that can also reveal
significant global similarities. Local and global alignments are scored independently, so
they can be used in concert to infer homology. A set of 7,082 diverse sequences not
represented in the database provided queries for testing this approach. The resulting
distributions of scores led to guidelines for interpretation of search data and to the
classification of 289 uncatalogued sequences into known groups. Thirty-eight of these
relationships appear to be new discoveries. We also show how searching a database of
blocks can be used to detect repeated domains and to find distinct cross-family
relationships that were missed in searches of sequence databases.



INTRODUCTION

As a result of the accelerating expansion of sequence databanks, it becomes
increasingly probable that a search for similarity will succeed in detecting a relationship
between any newly determined sequence and one or more known sequences. Often such
relationships are important clues to gene or protein function. However, sometimes the
similarity is too weak for a potentially interesting relationship to be detected above the
background of chance alignments. Background increases with the growth of sequence
databanks, making distant relationships even more difficult to detect with confidence.

Detection of distant relationships can be aided by the presence of multiple
members of a single protein family in a database. For example, BLAST3 (Altschul and
Lipman, 1990) rescans a list of local alignments that score within the "twilight zone" of
search results to identify significant 3-way local relationships. Alternatively, a database in
which relationships are explicitly represented can be searched (Bairoch, 1992; Smith, R.
F. and Smith, 1990; Henikoff and Henikoff, 1991; Harris et al., 1992; Pongor et al., 1993).
An example of this latter approach is a database of protein "blocks" where each block is
a local multiple alignment of ungapped segments from a group of related proteins
(Henikoff and Henikoff, 1991). A query sequence is searched against this database of
blocks by calculating a position-specific scoring matrix (Gribskov et al., 1987)
representing each block and scoring every possible position in the query for all blocks in
the database. Searching a database of blocks provides information on local relationships,
useful for identifying sequence motifs. These searches are more specific than are
searches of sequence databases because blocks represent only the most highly
conserved regions of proteins, a much smaller set than the set of sequences.

Most protein families are characterized by multiple local motifs indicative of more
global relationships. Popular searching programs based on pairwise sequence
comparisons (e. g., Smith, T. F. and Waterman, 1981; Pearson, 1990; Altschul et al.,
1990; Gish and States, 1993), though designed to search for local relationships, can
detect global relationships as well. However, current searching methods designed to
detect local motifs common to multiple sequences do not take advantage of the global
information implied by multiple local motifs (Altschul and Lipman, 1990; Fuchs, 1991;
Wallace and Henikoff, 1992). The value of such global information for detecting or
verifying a family relationship motivates the approach described here.

Global information is present in the Blocks Database as multiple blocks and
distances between them observed for the sequences in the protein family. If a query
sequence belongs to a family with multiple blocks, then at least a subset of these blocks
should score highly in a search and be arranged in a compatible way along the query. In
the present approach, we quantify the degree to which this is the case. We demonstrate
the sensitivity and selectivity of this approach by the detection of uncatalogued
relationships for proteins not represented in the database of blocks. Using suspected
nucleic acid dependent ATPases of current biological interest as examples, we also show
that interesting cross-family relationships can be readily discerned.

METHODS
We define blocks as multiply aligned sequence segments without gaps, and
groups as collections of proteins that share sequence similarity. For this work, we used
groups that are listed in the PROSITE catalog (Bairoch, 1992), but a database of blocks
could be made from any collection of protein groups. The PROSITE catalog includes a file
(PROSITE.DAT) in which each entry contains the SWISS-PROT IDs for members of a
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protein group. Although each entry also provides a manually-derived PROSITE
consensus pattern, this is not used in generating blocks. PROSITE groups are
represented in the Blocks Database by one or more blocks (the average is 3.7 blocks)
generated by the automated PROTOMAT system (Henikoff and Henikoff, 1991). The
PROSITE pattern may or may not be contained in one of the blocks for a group.
Calibration of individual blocks and their concatenation into a single file results in a
database that can be searched using a query sequence. The current Blocks Database
contains 2,302 blocks representing 619 groups. The Blocks Searcher system consists of
the successive execution of two programs. PATMAT converts each block to a position-
specific scoring matrix (Henikoff et al., 1990) and scores all possible alignments of the
DNA or protein query sequence and the Blocks Database as previously described
(Wallace and Henikoff, 1992). A rank-ordered list of the individual blocks in the database
is the result. A new program, BLOCKSORT, then analyzes the result of a PATMAT search
by collecting the alignments for individual blocks belonging to a group and evaluating the
group as a whole. The overall strategy is outlined in Fig. 1.

So that search results can be evaluated quantitatively, two technical problems are
addressed in this study, one related to the scoring of individual blocks (PATMAT) and the
other to the evaluation of multiple blocks representing a group (BLOCKSORT). First,
individual blocks should be scored fairly in competition with one another. We show that
our empirical calibration procedure leads to block scores for shuffled sequences that
approach the expected distribution of scores and do not appear to favor particular blocks.
Second, multiple blocks should be evaluated by a global measure that accurately reflects
the chance probability of a sequence aligning correctly with them. We show that our
calculated "expectant value" (E) corresponds closely to probabilities observed in
searches using both shuffled and unshuffled true negative query sequences.

Determining hits

A "hit" reported by the Blocks Searcher consists of one or more blocks from a
protein group represented in the Blocks Database. The blocks in a hit must be positioned
in the query sequence in a manner that is compatible with their positions in the sequences
documented as belonging to the group, where compatibility is determined by order and
distance apart.

Individual block alignments are sorted by PATMAT score, a measure of local
similarity (see below). By default, the Blocks Searcher currently saves the best 400
alignments for analysis, except for DNA sequence queries >5000 bp for which 1000
alignments are saved. BLOCKSORT first sorts the saved PATMAT results by strand and
block name, determines the minimum rank for each separate BLOCKS group, and re-
sorts by minimum rank, strand and block name. It then analyzes each group that has at
least one block with PATMAT score above 1000, which is the 99.5 percentile calibration
point (Henikoff and Henikoff, 1991). By default the maximum number of hits reported is
currently set to 10; for DNA sequences larger than 10,000 bp, this number increases by
one for every 1000 bp. Defaults are determined empirically to achieve a balance of
sensitivity and selectivity for sequences of typical lengths (data not shown).

For each hit, the PATMAT score, rank, and location (frame and offset) of each
block alignment in the group is listed. BLOCKSORT looks up the group for each hit in the
Blocks Database and prints a map of the relative locations of the blocks in the database.
This includes the width and order of the blocks separated by the minimum and maximum
distances for all sequences represented by the blocks. Then it checks the alignments of
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the blocks in the group with the query, looking for the most compatible arrangement, and
builds a query map. The BLOCKSORT output for the example diagrammed in Fig. 1 is
shown in Fig. 2.

The highest ranking block in a hit is called the "anchor” block (Block A in Fig. 2)
and any other blocks in the hit are called "supporting” blocks (Blocks B and D). Note that
if 10 hits are reported in a search, there will be 10 anchor blocks, one per hit. While the
anchor block for a true positive hit is typically the highest ranking block in the search, this
need not be the case.

Starting with the anchor block, BLOCKSORT considers each other block in rank
order to see if it supports the anchor block. A supporting block must align with the query
sequence in the correct order and within reasonable distances of the other blocks mapped
so far. The distance from neighboring blocks is considered reasonable if it is at least -1
(overlaps a neighboring block by at most 1 amino acid) and at most the sum of the
maximum and minimum distances for any sequence in the group. As each supporting
block is added to the query map, the distances are checked to the closest blocks already
in the query map on either side. In the example, Block C is excluded from the hit because
it aligns 40 residues upstream from the alignment with the higher-ranking Block D,
whereas the largest allowable distance (maximum + minimum) is only 34 residues (23 +
12) in the best path. Blocks from the group included in the final query map together
constitute the hit. Blocks from the group that do not fit are displayed below the query map.
For each block included in a hit, the alignment of the query with the sequence from the
block in the Blocks Database with which it shares the most identical residues is shown to
assist in evaluating the hit.

Evaluating single block hits

Each alignment of the query sequence with a block is an ungapped local alignment
between the query sequence and sequences belonging to the group represented by the
block. Since blocks are of different widths and different degrees of similarity, it is
necessary that blocks scores be calibrated to allow comparisons to be made between
them. Calibration is achieved by dividing the raw score by a "lower calibration score”,
resulting in a PATMAT score (Henikoff and Henikoff, 1991). The raw score is the sum of
scores for each aligned position using the position-specific scoring matrix derived from the
block. The lower calibration score is the 99.5th percentile level of presumed true negative
alignments obtained using the same matrix to similarly score all possible alignments of
the block with the SWISS-PROT protein sequence database (Bairoch and Boeckmann,
1992). Thus, an alignment of a sequence segment with a block that obtains a PATMAT
score of 1000 should be as good as an alignment at the 99.5 percentile level of true
negatives when that block is used to search SWISS-PROT. For single block hits, the
PATMAT score is used for evaluation of the implied local similarity. For multiple block hits,
ranks rather than PATMAT scores are used. This both reduces the effect of imperfections
in the calibration procedure and allows a simple intuitive model to be used in estimating
the chance probability of a hit, described below.

Evaluating multiple block hits

Multiple block hits contain information about global similarity between the query
sequence and members of a group. We seek a measure of global similarity in addition to
the PATMAT scores for individual blocks in the hit. This measure should quantify how
often the blocks reported in the hit are arranged along the query sequence in the correct
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order and are separated by reasonable distances. It is very difficult to construct a realistic
theoretical model for scoring multiple block hits because different protein groups include
different numbers of sequences and are represented in the Blocks Database by different
numbers of blocks with diverse properties. Therefore, we intuitively model the process of
searching a database of blocks to compute an expectant value, E, that can be used to
guantify the degree of global similarity. For example, a value of E=10-3 would be expected
to occur by chance once for every 1000 searches of the database. Whether or not these
expectant values are realistic is determined empirically.

Let the query sequence be of length N amino acids. If the query is a DNA
sequence, N is 3 times the number of nucleotides in the sequence since the query is
translated in all 3 frames on each strand and all the block alignments in a hit must be on
the same strand. Let B be the number of blocks in the Blocks Database. In the search of
the query against the Blocks Database, each block in the database independently
receives a PATMAT score for every possible alignment with the query, so there are N
ranks for each block and NB total ranks assigned. Let the particular set of blocks from
which a hit is mapped have G member blocks in the Blocks Database. In the search, the
G blocks in the hit are assigned NG different ranks. The block belonging to the group
assigned the minimum rank (not necessarily rank 1) is the anchor block. Let the number
of supporting blocks in the hit be S, S<G, the rank of each supporting block be rank,, and
the allowable minimum and maximum distances from the anchor block to each supporting
block as computed from the sequences in the group in the Blocks Database be ming and
max, S=1,S. For the example shown in Figure 1, A is the anchor block and D the first
supporting block, ming is the sum of widths for blocks B and C less one to allow for overlap
(26+58-1=83) and max, is the sum of widths for blocks B and C plus the sum of minimum
and maximum distances [26+58+(10+14)+(8+41)+(12+23)=192]. Let the distance
between the anchor and supporting blocks in the query be dist,, s=1,S. Then we model
the probability that the supporting blocks could be found by chance as:

Since each alignment is scored independently, this becomes:

Since the ranks are assigned independently of the location of the alignments, this

becomes:

We estimate the rank probability by analogy to the situation in which an object is
drawn at random from a collection of objects of two types without replacement (Lindgren,
1968). Such a situation might occur for example in draw poker, where a player holding an
ace (analogous to the anchor block) wishes to know the probability of drawing more aces
(analogous to supporting blocks) from the deck (analogous to the database). In our
situation, the objects are the NB alignments of blocks from the database and the two types
are the NG alignments that belong to the hit group and the NB-NG that do not. We
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compute the simple probability that the S+1 alignments from the hit group are drawn in
the order observed. The task is to assign ranks to NG alignments from among the NB
evaluated in the search. We estimate the rank probability for this model using the
hypergeometric distribution. For the st supporting block let:

D = number of alignments ranked since the previous supporting block,

T = number of alignments left to be ranked,

R = number of alignments from the group represented by the hit

left to be ranked.

So the number of alignments not from the group represented by the hit left to be ranked
is T-R. Then for the s supporting block:

P(rank=rank)

= P(one of the D alignments ranked is from the hit group)

= (#ways to choose 1 hit group alignment from R)
* (#ways to choose D-1 non-hit group alignments from T-R)
+ (#ways to choose D alignments from T):

We estimate the distance probability as the fraction of allowable positions of the
supporting block in the sequence:

Since each alignment of each block is ranked independently, rank and distance
probabilities are computed for each supporting block separately and the probabilities for
all supporting blocks are multiplied together to obtain the expectant value (E). Because
our method for obtaining E is based on probabilities, 0 < E < 1. For single block hits, where
no global similarity measure is available, E=1.

Queries for empirical tests

The SWISS-PROT 24 database was used to provide a list of all sequences that
were not represented in the PROSITE 10.0 catalog from which groups were obtained to
generate the current Blocks Database (Blocks 6.0). To maximize diversity among test
gueries, only a single sequence with the same protein name but different species name
was chosen, leading to the selection of 7,082 sequences. Each of these sequences was
used to query Blocks 6.0, producing 46,022 hits, nearly all of which should be true
negative hits. Each sequence was also shuffled by randomly permuting individual
residues, and each shuffled sequence was used to query Blocks 6.0, producing 43,783
true negative hits. For convenience, we refer to the 7,082 SWISS-PROT sequences as
the "true negative sequences"”, and to their shuffled versions as the "shuffled sequences".



Implementation

The Blocks Searcher has been implemented as an electronic mail server (Henikoff
et al., 1993). Detailed instructions with illustrative examples can be obtained by sending
the message "help" in the subject line to blocks@howard.fhcrc.org. The Blocks Database
is updated semi-annually following each significant update of PROSITE. The PATMAT
and BLOCKSORT programs are written in standard C for UNIX workstations and are
available by anonymous ftp from the NCBI repository, ncbi.nim.nih.gov, in the blocks
subdirectory. Further information can be obtained by sending a request to
henikoff@howard.fhcrc.org.

RESULTS
Evaluating local similarity

It is important to ascertain whether the PATMAT score used as measure of local
similarity can be interpreted in terms of a reasonable model of chance. Ideally, all blocks
should be equally likely to score at or above a given level in searches against the Blocks
Database using a random query sequence. Since it is difficult to construct random protein
sequences sufficiently similar to real sequences in length and composition, we chose to
test a set of fictitious sequences with lengths and compositions identical to a diverse set
of real sequences by shuffling 7,082 sequences selected from SWISS-PROT.

For all searches, the PATMAT scores for the highest ranking blocks can be used
to assess the effectiveness of the calibrated PATMAT score for making direct
comparisons of blocks of different composition (Henikoff and Henikoff, 1991). If all blocks
were equally likely to rank first, then on the average, a block should rank first in the
shuffled sequence searches about 3 times (7,082 searches + 2,302 blocks = 3.02), and a
Poisson distribution of frequencies should result for all 2,302 blocks. However, because
shuffled sequences reflect the same variations in amino acid composition and length as
for the real sequences from which they are derived, even perfect calibration might not lead
to a Poisson distribution of rank 1 block frequencies. Nevertheless, the observed
distribution has mean 2.98 and does not seriously deviate from a Poisson distribution (Fig.
3A). Furthermore, when the search data are divided arbitrarily into two equal parts, only
2 of the 20 blocks that appear in the tail of one set appear in the tail of the other set.

Another assessment of calibration effectiveness comes from examination of the
distribution of anchor blocks for shuffled sequences. A total of 43,783 true negative hits
resulted from the searches of 7,082 shuffled sequences against the Blocks Database.
This means that on average at least one block from about 6 different groups achieved a
PATMAT score of at least 1000 in each search. Each hit includes an anchor block with a
PATMAT score reflecting the best local alignment between the query and the highest
ranking block in the hit. If all blocks were equally likely to appear as the anchor block in a
hit, then on average each block would be the anchor for 43,783 hits/2,302 blocks = 19 hits.
However, If some blocks become anchor blocks in hits at unexpectedly high (or low)
frequencies, then a multiphasic distribution should result. Fig. 3B shows that the
distribution is approximately normal with mean 18.5. About 2% of the blocks fall into small
peaks at either end of the distribution, suggesting imperfections in the calibration
procedure. However, it is noteworthy that only one of the ten blocks lying within the high-
frequency tail of the distribution of rank 1 blocks (Fig. 3A) is the same as one of those lying
within the tail of the distribution of all anchor blocks (Fig. 3B). Examination of these high-
frequency blocks does not reveal any common feature that could account for their better
performance in the searches (data not shown). Together, these observations on the
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distribution of PATMAT scores for rank 1 blocks and all anchor blocks indicate that our
block calibration procedure is effective in preventing some blocks from being unduly
favored in a search. PATMAT scores are reported with percentiles of the distribution of
the scores for the shuffled queries to aid in evaluation of local similarity. For calculating a
global similarity measure, our use of ranks rather than PATMAT scores should minimize
effects of imperfections in the calibration procedure, since only the order of scores matters
and not their precise distribution.

Evaluating global similarity

Hits from searches of the shuffled sequences against the Blocks Database can
also be employed to evaluate the expectant value used to assess global similarity for
multiple block hits (Table 1a). The most significant single hit obtained an expectant value
E of 2.9x105, very close to the observed probability of hits in this range of E (1/43,783 =
2.3x10%). Furthermore, for all intervals of E, the observed probabilities of hits are very
close to the value of E itself, suggesting that our expectant value E can be used as a proxy
for the probability of a multiple block hit. While it is possible that the intuitive model used
to calculate E is not ideal, the empirical support described in this and the next section
justifies using E to estimate the significance of hits.

Together, the anchor block scores and the expectant values from the searches
with shuffled queries provide independent evidence that can be used to evaluate a hit,
because the anchor block score is not used to calculate E (Fig. 4). For example, a hit with
anchor block score as good as or better than 1300 (= the 98th percentile) and expectant
value as good as or better than 103 is expected to occur at least once by chance in 7000
searches, but is not expected to occur in 1000 searches. A hit with anchor block score of
1200 (= the 85th percentile) and expectant value of 102 is expected to occur by chance

at least once in 1000 searches, but is not expected to occur in 100 searches.

New classifications

Searches were also carried out using the same 7,082 sequences without shuffling,
which provided a set of 46,022 hits (Table 1b). Evaluation of these hits must take into
account the possibility that many of the presumed true negatives are actually true
positives, but were not catalogued as such in PROSITE 10.0. In addition, many local
similarities are known but not catalogued, for example ATP-binding domains and glycine-
rich regions. Therefore, the highest scoring hits were examined manually in order to
remove these known true positives from the lists of results. In all, 289 hits were removed
from the top of the lists. The distributions of anchor block scores and expectant values
from these pruned results lists are very similar to the distributions obtained using shuffled
gueries (Table 1). For example, the best true negative expectant value was E = 1.0 x 10-
4, slightly less significant than the best obtained for the shuffled sequences (E = 2.9 x 10).

High scoring true positive hits identified in the above analysis include 38
uncatalogued relationships involving 29 different protein groups that do not appear to
have been reported in the original or subsequent publications (Table 2). For example,
there are two hits involving genes from yeast chromosome Il that were not reported in the
original study presenting the complete sequence of the chromosome (Oliver et al., 1992),
nor in more careful studies in which a variety of methods were employed to discover
relationships (Bork et al., 1992b; Bork et al., 1992a): The first of these is the hit that aligns
YCZ2_YEAST and the zinc alcohol dehydrogenases (BL0O0059, Fig. 2), with E = 1.4x10-
6; a value this good is expected to occur by chance only about once in 1 million searches,
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with independent evidence provided by the anchor block score (98.5th percentile). Three
other new members of this large and diverse family scored even better (Table 2), yet were
overlooked by the authors of the original papers. The second yeast chromosome lll hit
aligns YCD9_YEAST with the beta-transducins (BL0O0678, Fig. 5A). The anchor block
score is in the 99.9th percentile, with independent evidence provided by the expectant
value of 0.00013 (Table 2), a combination of the two measures that is well above any that
have been observed in test searches (Fig. 4).

Several other relationships are worth noting. Homology between cholesterol
oxidase (CHOD_BREST) and the other flavin-dependent oxidoreductases in the GMC
group (BL0O0623) was not detected previously (Fig. 5B, Cavener, 1992; D. Cavener,
personal communication). This finding takes on added importance considering that the 3D
structure of cholesterol oxidase is known (Vrielink et al., 1991), and so can be used to
model members of the GMC group, whose structures are unknown. Other previously
unreported similarities include that between ribonuclease | (RNI_ECOLI) and the
ribonuclease T2 family (BL0O0530, Fig. 5C), between carboxypeptidase S
(CBPS_YEAST) and the diverse family that includes carboxypeptidase G (BL00758, Fig.
5D), and transporters of the oligoamines cadaverine (CADB_ECOLI) and putrescine
(POTE_ECOLI) and a family of amino acid transporters (BL00218, Fig. 5E-F). Among
other interesting new relationships detected is one between giardins (GIA1_GIALA,
GIA2_GIALA) and annexins (BL00223), both of which are cytoskeletal components, and
another suggesting that mouse transplantation antigen (TUM8 MOUSE) is the first
eukaryotic example of ribosomal protein L13 (BLO0783, Fig. 5G).

Each of the 38 sequences reported in Table 2 was used to search the database of
803 patterns in PROSITE v. 10.0, the same database from which BLOCKS v. 6.0 was
derived. Results were identical using either PATMAT (Wallace and Henikoff, 1992) or the
MOTIFS program of the GCG package (Devereux et al., 1984): in every case the
sequence failed to detect the pattern or patterns representing the PROSITE group
corresponding to that reported in Table 2.

Identification of repeated domains

Since each block typically represents a single protein motif, the presence of
repeated motifs can be detected in a search as high scores for a single block at multiple
positions within the query sequence. Among the set of protein queries tested, examples
of repeated motifs were identified. In some cases, these multiple motifs were found in
separate parts of the protein, such as for the previously undetected beta-transducin
similarity found at several positions within PLAP_MOUSE (Fig. 6A). In other cases, a
single block encompassed multiple copies of a repeat. This led to multiple high PATMAT
scores for alignments that overlapped. An example is E. coli FirA, an uncatalogued
member of the cysE/lacA/nodL acetyltransferase family (BL0O0101). Recently, Dicker and
Seetharam detected an "isoleucine patch" within FirA and members of this family
consisting of a 6 residue repeat present in FirA a total of 28 times (Dicker and Seetharam,
1992). The single 47 residue wide block representing this family in the Blocks Database
includes 8 copies of this repeat. Multiple high PATMAT scores were reported for this block
within FirA, including the top 3 scores in the search. In all, 18 high scores were reported,
mostly at overlapping positions. In 9 cases, the successive high-scoring alignments were
offset by 6 amino acids (Fig. 6B). Thus the 6-mer repeat within members of this family
becomes obvious upon examination of search results.
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Classification of suspected helicases

In some cases, families of related proteins are thought to belong to larger
"superfamilies”. However, the inclusion of a family into a superfamily is often difficult to
determine by objective criteria (Henikoff, 1991). A case in point is a collection of distinct
families that are claimed to belong to a superfamily of helicases. Several reports (Burgess
etal., 1990; Company et al., 1991; Girdham and Glover, 1991; Davis et al., 1992; Laurent
etal., 1992; Johnson et al., 1992; Okabe et al., 1992; Kuroda et al., 1991) have suggested
that two new families of proteins, those related to S. cerevisiae SNF2 and those related
to S. cerevisiae PRP16 (the DE-H family), contain "helicase motifs". These motifs derive
from alignments of likely RNA- and DNA-dependent helicases and other nucleic acid
dependent ATPases (Gorbalenya et al., 1989). However, helicase motifs are generally
detected using manual procedures that lack negative controls inherent in computer-based
database searches. Of specific concern is the fact that some of the motifs are common to
many ATPases that are not involved in nucleic acid metabolism.

A Blocks Database (v. 5.0) was supplemented with blocks representing families
used to derive the helicase motifs, and with blocks representing two new families in which
these motifs have been reported. Each sequence from each family was used to search
the database. Combined search results for all of the sequences from a single family are
shown in Fig. 7 as ranges of expectant values for the detection of blocks representing
each of the families. The diagonal values are for detection of a family to which a sequence
is known to belong, and off-diagonal values represent potential cross-family relationships.
For each of the two new families, SNF2 and DE-H, a single unequivocal cross-family
relationship was detected. In contrast, no other cross-family relationships were reliably
detected above background probabilities (E > 10-) in these searches, nor above what
was seen for searches using control ABC family sequences which contain ATP-binding
domains very similar to those found in the putative helicases.

A global relationship is found between the DE-H family and the family of cylindrical
inclusion (ClI) proteins from positive-stranded RNA viruses. This confirms the previous
detection of this specific relationship by Koonin (1991). Fig. 8A shows the alignment of
bovine diarrhea virus CI protein with sequence segments from blocks derived from ClI
proteins of other viruses, with 4 of 5 blocks detected
(E=1x108). Similarly, 4 of 5 DE-H family blocks were detected (E=5x10-°) in the same
search (Fig. 8B). In each case, the single best alignment of a segment within a block to
the BVDV CI sequence differs from one block to another, with 4 different proteins
represented. This illustrates an important advantage of searching a database of blocks
over searching a databank of sequences: for different conserved segments, the closest
similarities to a distant relative are distributed among different members of a family (see
also Figs. 2 and 5 for examples).

The analysis also revealed an unequivocal global relationship between the SNF2
family and poxvirus DNA-dependent ATPases (the VATP family), as reported previously
(Henikoff, 1993). This specific cross-family relationship was not reported by Bork and
Koonin (1993) for the SNF2 family, nor by Koonin and Senkevich (1992) for the poxvirus
proteins. Our analysis detected no other consistent relationships among hypothesized
helicase superfamily members above the level seen for occasional background hits in
these searches (E=10-2). These frequent background hits might be attributable to well-
known features that are common to ATP-binding proteins, such as are present in the ABC
negative control group. We suggest that the delineation of specific cross-family
relationships provides more useful information than is obtained from classification of
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much more diverse sequences into a single superfamily (Gorbalenya et al., 1989). It is
worth noting that subsequent to submission of our initial report (Henikoff, 1993),
SNF2_YEAST was revealed to be a DNA-stimulated ATPase without detectable helicase
activity (Laurent et al., 1993). Lack of helicase activity is a feature of well-studied
members of the poxvirus DNA-dependent ATPases (e. g. Kunzi and Traktman, 1989).

DISCUSSION

We have described an approach to protein family classification that involves
searching a database of protein blocks for both local and global similarities. In previous
work, blocks representing the Tcl family of transposase proteins were used to query a
nucleotide sequence databank; new Tcl family members were identified when a high
scoring alignment of a block to a sequence entry was supported by other correctly-spaced
block alignments (Henikoff, 1992). Evaluation was based on the rank of the supporting
alignments in a search, leading to probability estimates of chance similarity that took
advantage of the fact that each block was searched independently. Here we have
reversed this basic approach to the more typical situation in which the query is a sequence
of interest. The database that is searched includes families that are usually represented
by more than one block; therefore independent detection of multiple blocks can be used
to compute a global "expectant value". This value can be combined with an independent
"anchor block score" for the best local alignment to arrive at an overall level of confidence.

For this searching approach to be most effective, scores should be based on
biological realities as well as on a reasonable model of chance. To accomplish this goal,
raw block alignment scores are normalized based on an empirical calibration procedure
that involves using the block to query the full SWISS-PROT database. Normalization
should compensate for any advantage that one block might have over another in a search.
Indeed, distributions of anchor block frequencies appear to be well behaved using
shuffled sequence queries, and do not reveal any subsets of blocks that stand out.
Furthermore, expectant values reflect observed probabilities of multiple block hits both for
shuffled sequence queries and for true negative sequence queries. These empirical
results can justify an interpretation of these measures of similarity in terms of chance
probabilities. So, an anchor score in the 99th percentile is one that is expected to occur
among chance alignments once in 100 searches, and an expectant value of 106 is
expected to occur by chance once in 1 million searches. Our discovery of interesting new
relationships from a presumed true negative set of queries shows that these two
measures can provide guidance for inferring homology.

We suggest that our empirical normalization procedure provides more realistic
measures for determining biological significance than some others in common use. For
example, BLAST computes a P-value based on a theoretical model that assumes protein
sequences are random. However, Wootton and Federhen (1993) have found that about
40% of the proteins in SWISS-PROT do not conform to this model because of low
complexity regions that frequently lead to inflated similarity scores. Not only are such
regions typically omitted from blocks, but our empirical normalization procedure should
prevent inflated scores.

Our approach also makes possible the ready detection of repeated motifs, seen as
multiple high scoring regions of the query sequence for the same block. In the case of E.
coli FirA (Fig. 6B), a repeated but diverged 6-mer repeat missed by several labs (Dicker
and Seetharam, 1992) was easily detected as multiple overlapping high scores at 6
residue intervals.
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An additional advantage of searching the Blocks Database for detection of
homology is that a detected family relationship can be easily evaluated using the detailed
documentation for PROSITE groups. For example, in their list of homologs to yeast
chromosome 1ll ORFs, Oliver et al. (1992) reported that YCR11c is a homolog of the
Drosophila white gene. However, like the white protein, YCR11c is a member of the large
ABC transport family; comparison to the blocks from this family shows YCR11c to be no
more like the white protein than many other ABC proteins (unpublished results).

A different approach to protein classification is to search a database of simple
patterns. The most comprehensive database of patterns is PROSITE (Bairoch, 1992),
which includes one or more manually-derived pattern for each of the groups that we used
to generate the Blocks Database. The popularity of searching simple patterns is evident
from the number of programs available for searching PROSITE: 20 are listed in a recent
compilation (Bairoch, 1992). However, of the 38 new sequence classifications reported
here, not one of the corresponding patterns was detected by searching PROSITE.
Furthermore, we are unaware of studies demonstrating that searching a database of
simple patterns leads to the detection of relationships that are not easily detected using
score-based methods such as that described here.

While our approach takes advantage of the many different groups already
documented in PROSITE, it is not limited to those groups. For example, the "helicases”
(Fig. 7) include families not represented in the catalog, or in the case of DE-H proteins,
erroneously combined with the RAD3 proteins (Harosh and Deschavanne, 1991). Blocks
were generated from these distinct families using the PROTOMAT system and these
blocks were added to the Blocks Database. In this way, a suspected family of sequences
is required to compete against known groups.

The Blocks Database is necessarily much less complete than the sequence
databanks, since only catalogued groups with two or more members are represented. So
at present, our approach can only supplement searches based on pairwise alignments
(Pearson, 1990; Altschul et al., 1990; Collins and Coulson, 1990). Nevertheless, searches
of the Blocks Database provides a simplified and objective method for the detection and
evaluation of distant family relationships, a challenging problem that has spawned
numerous strategies. For example, Bork and associates (Bork et al., 1992b; Bork et al.,
1992a) have described a combination of different approaches for evaluating distant
relationships using ORFs from yeast chromosome Ill. While they were successful in
detecting many previously undescribed relationships, they did not detect relationships
involving two ORFs that were revealed in our tests. The typical biologist evaluating search
data does not have the same level of sequence analysis expertise as Bork and
associates. These authors have pointed to the need for new automated approaches to the
problem (Bork et al., 1992a). The automated searching system described here is one
such approach. About 1400 people have used it as an electronic mail server designed for
the the biologist with no special sequence analysis skills.
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Table 1. Relationship between expectant value (E) and observed hit frequency

Expectant value interval

within E interval

Unshuffled

Frequency Observed P

(Pruned)  (Pruned)

E <35x10 5
35x10 *®<E <35x10
35x10 *®<E <35x10
39x10
35x10 “<E <35x10
35x10 =3<E <35x10
35x10 2<E <35x10
35x10 1<E

9.1x10
Total hits

Observed frequency and probability of hits

a) Shuffled ? b)
?
Frequency Observed P ? Frequency
?
? All
?
0 0 ? 62 0
0
?
1 2.3x10 -5 11 0
0
15 3.4x10 -4 63 18
124 2.8x10 -3 177 141
3.1x10 -
625 1.4x 10 -2 774 740
1.6x10 -2
3000 6.9x10 -2 3250 3227
71x10 -2
40018 9.1x10 -1 41685 41607
?
43783 ? 46022 45733
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Table 2. New classifications from searches of Blocks v. 6.0

BL# Group description
Percentile  1Zone?

41 AraC bacterial regulators
99.95

44 LysR bacterial regulators
99.85

59  Zinc alcohol dehydrogenases
99.13

59
100.00<1/7000
59

99.90

59

98.5

<1/7000
<1/7000

60 Iron alcohol dehydrogenases
100.00<1/7000

60

100.00<1/7000

61 Short-chain alcohol dehydrogenases
99.85

Query ID # Blocks E Score
MARA_ECOLI 1 1 1587
<1/1000
DGDR_PSECE 1 1 1440
<1/100

MURA_ECOLI 4 6.8x10-11 1339
<1/7000
QOR_ECOLI 3 1.4x10-6 1694

VAT1_TORCA 3 1.5x10-7 1476

YCZ2_YEAST 3 1.4x10-6 1310

TCBF_PSESP 3 1.0x10-7 1813

TFDF_ALCEU 4 1.1x10-8 1811

CSGA_MYXXA 2 0.0056 1446

<1/7000

61 MAS1_AGRRA 3 3.3x10-5 1509
99.93 <1/7000

61 SPRE_RAT 3 1.3x10-6 1407
99.7 <1/7000

101  cysE/lacA/nodL acetyltransferases LPXA_ECOLI 1 1 1499

99.93 <1/1000

195  Glutaredoxins YRUB_CLOPA 2 0.016 1281
97.4 <1/1000

215 Energy transfer proteins PMP4_CANB 3 0.0001 1384

99.5 <1/7000

216 Sugar transporters TCR1_BACSU 3 0.0002 1274
97.0 <1/1000

218  Amino acid permeases CADB_ECOLI 2 0.00023 1370
99.5 <1/7000

218 POTE_ECOLI 3 0.00026 1543
99.96 <1/7000

223  Annexins GIA1_GIALA 3 0.00011 1574
99.96 <1/7000

223 GIA2_GIALA 2 0.0046 1578
99.96 <1/7000

275  Shiga/ricin toxins JIP_HORVU 5 1.4x10-11 1275
97.0 <1/7000

282 Kazal serine protease inhibitors FSA_PIG 1 1 1621

100.00<1/7000

297
48.6

Heat shock protein 70

<1/100

MREB_ECOLI 3 0.00017 1113
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462 Gamma-glutamyl transpeptidases PAC1 PSES3 7 5.1x10-20 1995
100.00<1/7000

489 Phage-type RNA polymerases YS21_MAIZE 5 2.5x10-11 1698
100.00<1/7000

491  Amino-P/proline peptidases AGS AGRRA 3 3.7x10-5 1379
99.6 <1/7000

504 Fumarate reductase flavoproteins NADB _ECOLI 9 4.0x10-21 1960
100.00<1/7000

530 Ribonuclease T2s RNI_ECOLI 2 0.00029 1286
97.6 <1/1000

552 MerR bacterial regulators MERD_PSEAE 2 0.00042 1410
99.75 <1/7000

573  Class Il flavoproteins CYMO_ACISP 3 0.0019 1257
95.8 <1/1000

623 GMC flavoproteins CHOD_BREST 3 5.3x10-5 1373
99.5 <1/7000

646 Ribosomal protein S13 YM08 PARTE 1 1 1623
100.00<1/7000

665 Dihydropicolinate synthetase NPL_ECOLI 4 5.4x10-11 1742
100.00<1/7000

678 Beta transducins PLAP_MOUSE 2 0.014 1428
99.83 <1/7000

678 YCD9_YEAST 2 0.00013 1516
99.94 <1/7000

703 Prokaryatic ornithine decarboxylase ADI_ECOLI 9 4.6x10-24 2324
100.00<1/7000

710  Phosphoglucomutases UREC_HELPY 3 7.8x10-7 1763
100.00<1/7000

758  ArgE/dapE/CPG2 peptidases CBPS_YEAST 3 4.3x10-5 1337
99.10 <1/7000

783  Ribosomal protein L13 TUM8_MOUSE 2 0.0002 1442
99.85 <1/7000

1Based on shuffled sequence searches where the maximum anchor block score was
1617 for 7,082 searches.
°Based on Fig. 4
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FIG. 1. Overall strategy for searching a database of blocks. The PROTOMAT system is
applied to a family of protein sequences, resulting in a "best path” of blocks, illustrated
here for the example of Fig. 2. The Blocks Database consists of successive application of
PROTOMAT to unique groups catalogued in PROSITE, including calibration of each
block based on the results of searching SWISS-PROT (not shown). PATMAT converts
each block to a search matrix and scores all possible alignments of the query with all
blocks in the database, saving the top scoring alignments in rank order. BLOCKSORT
starts with the top ranking alignment (block A from this best path) and determines whether
the hit includes multiple blocks among the saved alignments that are correctly spaced
along the query sequence. BLOCKSORT then computes an expectant value (E) to
evaluate whether these supporting block alignments (B and D) are due to chance. The
best path for the group is depicted with block widths (numbers below) and ranges of
distances between blocks (numbers above). For the aligned segments shown in the
bottom panel, the distance between each block is shown above.

FIG. 2. Example of BLOCKSORT output. This shows that YCZ2_YEAST is a member of
the zinc-containing alcohol dehydrogenase family (BLO0059 in Table 2). YCZ2_YEAST
was compared with each block in the Blocks Database by PATMAT, which assigned each
block alignment a score and ranked the scores. The BLOCKSORT program then
collected all individually scored blocks for the BLO0O059 group as shown here. For each
block alignment in the group, BLOCKSORT reports the rank, frame (always 1 for a protein
guery), score and location from the PATMAT results, where location refers to where the
query aligns with the block. It also reports block strength (Henikoff and Henikoff, 1991)
from the Blocks Database. Here, the A block is the anchor block because it ranks highest
among all alignments with blocks in the BLO0059 group. In this example, the BLOO059A
block also ranks highest in the search, but an anchor block need not have rank 1. The
percentile for the anchor block score reported here (98.5) is based on the distribution of
anchor block scores for shuffled sequence queries (Table 1a). The expectant value
(E=1.4e-06) is computed for the B and D blocks in support of the A block. Below the
expectant value, the four database blocks for the BLOO059 group are mapped with the
scale noted. The blocks are indicated by repeated upper case letters, and these are
separated by minimum (:) and maximum (.) distances observed between blocks in known
members of the family. The BLO0O059 blocks found in YCZ2_YEAST are mapped below
the database blocks at the same scale for comparison. The first YCZ2_YEAST line
includes the blocks in the hit (the anchor block A and the two supporting blocks B and D).
The second YCZ2_YEAST line includes blocks listed for the group that are not included
in the hit. The "<" before the A block on this line indicates that it aligns outside of the query
map scale. While both the B and D blocks are correctly spaced from the anchor block and
so are included as supporting blocks in the hit, the C block is too distant from the D block
and is excluded. Only the higher ranked of the two alignments of YCZ2_YEAST with
BLOOO59A is used. Below the map, an alignment is shown of the query sequence
YCZ2_YEAST with the sequence closest to it in each database block included in the hit
based on identical residues. For example, the BLOOO59A segment of YCZ2_YEAST
aligns with the corresponding segment of ADHX_HORSE. In the alignments, distances
between detected blocks are shown as (min, max): for the database sequences followed
by the distance in the query sequence. So, in the Blocks Database distances between
blocks BLOOO59A and BLOOO59B range from 10 to 14 residues, and the distance between
these blocks in YCZ2_YEAST is 9 residues.
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FIG. 3. A. Frequency distribution of rank 1 blocks for all 2,302 blocks in the Blocks
Database (v. 6.0) resulting from searches using 7,082 shuffled query sequences (circles).
Each point represents the number of searches in which different blocks ranked first. For
example, 539 different blocks ranked first in two searches. This distribution is compared
to the values expected for perfect Poisson frequencies (triangles). B. Frequency
distribution of anchor blocks for all 43,783 hits reported in the 7,082 searches (solid line)
compared to a normal distribution (dotted line). For example, 59 different blocks were
anchor blocks (achieved a PATMAT score of at least 1000 and ranked highest for a group)
in 10 searches.

FIG. 4. Occurrence of hits with respect to anchor score and expectant value (E) for
shuffled queries. Points represent the best anchor block hit in all 7,082 searches for each
expectant value interval (connected by solid lines), the 7th best anchor block hit (dotted
line) and the 70th best anchor block hit (dashed line). Any combination of anchor score
and E lying above the solid line is expected to occur by chance <1/7000 searches, and so
forth. Percentiles are based on shuffled sequence anchor scores. Log E < -4 was never
observed with shuffled sequence queries.

FIG. 5. Examples of new classifications found in searches using the real sequence test
set. In each example, the alignment of the query segment with a sequence segment from
blocks in the family is shown with the query segment on top and the block sequence
segment below. The distance between successive query segments is shown in
parentheses above the range of distances between block segments for all family
members. Upper case indicates a match at that position between the query and any
segment in the aligned block. Identities are boxed.

FIG. 6. Detection of repeats. See legend to Fig. 2. A) The A and B blocks of the beta-
transducin family (BLOO678) were detected at several positions within PLAP_MOUSE as
shown on the query map. B) No map is provided for single block hits, however
examination of the Location column shows that 18 copies of a 6-mer repeat were detected
within the query sequence by the single block (see text).

FIG. 7. Ranges of expectant values (high/low) reported in searches of BLOCKS v. 5.0
(Henikoff and Henikoff, 1991) supplemented with the blocks representing several different
families. Protein family names are displayed along the top with the number of blocks
representing the family indicated in parentheses. Individual sequences from each family
were used as queries, with the number of such sequences indicated in parentheses.
Representative sequences (SWISS-PROT IDs) for each family are: POLG_BVDV (P80
sequence only) (Cl), MLE_DROME (DE-H), NTP1_VACCYV (VATP), SNF2
(SNF2_YEAST), DEAD (IF41_MOUSE), RAD3 (RAD3_YEAST), EX5B_ECOLI (RECB),
and BROW_DROME (ABC). Expectant value ranges for the top background hit in each
search are shown at the right.

FIG. 8. Alignments of segments from BVDV P80 protein with the most closely related
segment from each block. Blocks are from A) positive-stranded RNA viral Cl proteins and
B) DE-H proteins. BVDV was excluded from the best path by the PROTOMAT system,
which accounts for its absence from the blocks representing the viral Cl proteins. See
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legend to Fig. 5.
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Block Rank Frame Score Strength ~ Location Description

BLOOO59A 1 1 1310 2439 2- 42 Zinc-containing alcohol dehyd
BLOO059A 371 1 825 2439 0- 40 Zinc-containing alcohol dehyd
BLOO059B 15 1 984 1967 52- 77 Zinc-containing alcohol dehyd
BLOO059C 105 1 891 2795 77- 134 Zinc-containing alcohol dehyd
BLOO059D 2 1 1232 2388 174- 229 Zinc-containing alcohol dehyd

1310=98.5th percentile of anchor block scores for shuffled queries
E=1.4e-06 for BLOO059D BL0O0059B in support of BLOOO59A
[----- 108 residues----|
BLO0059 AAAAAAAAA::.BBBBBB.......... cccececececececcecece:::...bbbbbbbbbbDDD
YCZ2_YEAST AAAAAAAAA::BBBBBB::::::::::::::::DDDDDDDDDDDDD
YCZ2_YEAST <AAAAAAAA cccceeceecceccecece

BLOOOS9A <->A (1,35):1
ADHX_HORSE 9  AAVAWEAGKPVSIEEVEVAPPKAHEVRIKIATAVCHTDAY

LTI T LIELL I
YCZ2_YEAST 2 KAVVIEdGKaVVKEQVPIPELeEGIVLIKILAVAgnpTDwa

BLOO0O59B A<->B (10,14):9
ADH3_ASPNI 62 PLIGGHEGAGVVVAKGELVKDEDFKI

LA
YCZ2_YEAST 52 GsILGcdAAGQIVKLGPaVdpkDFsl

BLO0059D B<->D (78,122):96
ADH_CLOBE 173 IGIGAVGLMGIAGAKLRGAGRIIGVGSRPICVEAAKFYGATDILNYKNGHIVDQVM

LI N
YCZ2_YEAST 174 gGAtAVGQSLIQIANKINGftkiIVvAsTKhEKLIKEYGADQIfDYhDiDvVeQlk
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A) PLAP_MOUSE vs. BL00678 (Beta-transducins)

Block Rank Score Location
BLO0O678A 4 1125 69-83
BLO0O678A 5 1076 109-123
BLOO678A 13 1024 148-162
BLO0O678A 21 978 189-203
BLOO678A 71 908 228-242
BLOO678A 79 901 28-42
BLO0678B 1 1428 71-82
BLO0O678B 2 1395 111-122
BLO0678B 20 982 30-41
BLO0O678B 47 936 191-202
BLO0678B 52 928 150-161

1428=99.82th %-ile of anchor block scores for shuffled queries
E=0.014 for BLO0O678A in support of BLOO678B

BLOOG78 AAA . e BB
PLAP_MOUSE ;i AAABB
PLAP_MOUSE AAA  AAA AAA AAA  AAA
PLAP_MOUSE BB BB BB BB

BLOO678A <->A (69,537):27  BLO0678B A<->B (28,286):28
PRO4_YEAST 364 VATGGGDGIINVWDI CC4 YEAST 438 SGSTDRTVRVWD

il LTI
PLAP_MOUSE 28 IATGGnDHNIclfsL PLAP_MOUSE 71 SGSWDtTaKVWI

B) FIRA_ECOLI vs BL0O0101 (cysE/lacA/nodL acetyltransferases)

Block Rank Score Location
BLO0O101 1 1472 111-157
BLO0101 2 1273 147-193
BL0O0101 3 1251 123-169
BLO0101 8 1059 99-145
BLO0101 12 1048 224-270
BLOO101 11 1048 218-264
BL0O0101 20 1013 93-139
BL0O0101 23 1000 242-288
BL0O0101 33 985 141-187
BLO0101 36 982 117-163
BLO0101 43 974 260-306
BL0O0101 47 970 129-175
BLO0101 61 951 202-248
BL0O0101 205 870 159-205
BL0O0101 235 862 261-307
BL0O0101 261 855 229-275
BL0O0101 269 853 196-242
BLO0101 343 838 153-199

1472=99.89th %-ile of anchor block scores for shuffled queries
E=1.00 for BL0O0101

BLO0101 (111,195):110
THGA_ECOLI 134 IGNNVWIGSHVVINPGVTIGDNSVIGAGSIVTKDIPPNVVAAGVPCR
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L[ L1
FIRA_ECOLI 111 LGNNVsIGAnAVIesGVEIGDNVilGAGcfVgKnskiGAgsriwanv
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